logistic regression with the continuous predictor |
Model Information | |
---|---|
Data Set | WORK.MYDATA |
Response Variable | outcome |
Number of Response Levels | 2 |
Model | binary logit |
Optimization Technique | Fisher's scoring |
Number of Observations Read | 124 |
---|---|
Number of Observations Used | 118 |
Response Profile | ||
---|---|---|
Ordered Value |
outcome | Total Frequency |
1 | no | 70 |
2 | yes | 48 |
Note: | 6 observations were deleted due to missing values for the response or explanatory variables. |
Model Convergence Status |
---|
Convergence criterion (GCONV=1E-8) satisfied. |
Model Fit Statistics | ||
---|---|---|
Criterion | Intercept Only |
Intercept and Covariates |
AIC | 161.457 | 116.384 |
SC | 164.228 | 121.925 |
-2 Log L | 159.457 | 112.384 |
R-Square | 0.3290 | Max-rescaled R-Square | 0.4439 |
---|
Testing Global Null Hypothesis: BETA=0 | |||
---|---|---|---|
Test | Chi-Square | DF | Pr > ChiSq |
Likelihood Ratio | 47.0730 | 1 | <.0001 |
Score | 26.1402 | 1 | <.0001 |
Wald | 20.1538 | 1 | <.0001 |
Analysis of Maximum Likelihood Estimates | |||||
---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error |
Wald Chi-Square |
Pr > ChiSq |
Intercept | 1 | 2.1943 | 0.4180 | 27.5625 | <.0001 |
predictor | 1 | -0.0362 | 0.00806 | 20.1538 | <.0001 |
Odds Ratio Estimates | |||
---|---|---|---|
Effect | Point Estimate | 95% Wald Confidence Limits | |
predictor | 0.964 | 0.949 | 0.980 |
Association of Predicted
Probabilities and Observed Responses | |||
---|---|---|---|
Percent Concordant | 84.4 | Somers' D | 0.689 |
Percent Discordant | 15.5 | Gamma | 0.689 |
Percent Tied | 0.1 | Tau-a | 0.335 |
Pairs | 3360 | c | 0.844 |
Wald Confidence Interval for Parameters | |||
---|---|---|---|
Parameter | Estimate | 95% Confidence Limits | |
Intercept | 2.1943 | 1.3751 | 3.0135 |
predictor | -0.0362 | -0.0520 | -0.0204 |
Profile Likelihood Confidence Interval for Odds Ratios | ||||
---|---|---|---|---|
Effect | Unit | Estimate | 95% Confidence Limits | |
predictor | 1.0000 | 0.964 | 0.948 | 0.978 |
logistic regression using the cutoff of the predictor |
Model Information | |
---|---|
Data Set | WORK.MYDATA |
Response Variable | outcome |
Number of Response Levels | 2 |
Model | binary logit |
Optimization Technique | Fisher's scoring |
Number of Observations Read | 124 |
---|---|
Number of Observations Used | 118 |
Response Profile | ||
---|---|---|
Ordered Value |
outcome | Total Frequency |
1 | no | 70 |
2 | yes | 48 |
Note: | 6 observations were deleted due to missing values for the response or explanatory variables. |
Class Level Information | ||
---|---|---|
Class | Value | Design Variables |
PredictNumcut | 0 | 1 |
1 | -1 |
Model Convergence Status |
---|
Convergence criterion (GCONV=1E-8) satisfied. |
Model Fit Statistics | ||
---|---|---|
Criterion | Intercept Only |
Intercept and Covariates |
AIC | 161.457 | 117.051 |
SC | 164.228 | 122.592 |
-2 Log L | 159.457 | 113.051 |
Testing Global Null Hypothesis: BETA=0 | |||
---|---|---|---|
Test | Chi-Square | DF | Pr > ChiSq |
Likelihood Ratio | 46.4062 | 1 | <.0001 |
Score | 44.1278 | 1 | <.0001 |
Wald | 36.6758 | 1 | <.0001 |
Type 3 Analysis of Effects | |||
---|---|---|---|
Effect | DF | Wald Chi-Square |
Pr > ChiSq |
PredictNumcut | 1 | 36.6758 | <.0001 |
Analysis of Maximum Likelihood Estimates | ||||||
---|---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error |
Wald Chi-Square |
Pr > ChiSq | |
Intercept | 1 | -0.1642 | 0.2386 | 0.4735 | 0.4914 | |
PredictNumcut | 0 | 1 | -1.4451 | 0.2386 | 36.6758 | <.0001 |
Odds Ratio Estimates | |||
---|---|---|---|
Effect | Point Estimate | 95% Wald Confidence Limits | |
PredictNumcut 0 vs 1 | 0.056 | 0.022 | 0.142 |
Association of Predicted
Probabilities and Observed Responses | |||
---|---|---|---|
Percent Concordant | 64.3 | Somers' D | 0.607 |
Percent Discordant | 3.6 | Gamma | 0.895 |
Percent Tied | 32.1 | Tau-a | 0.296 |
Pairs | 3360 | c | 0.804 |