Image | %LIGHTBOX{ image="lancetdata.jpg" thumbnail="tn_lancetdata.jpg" caption="Lancet Data Graphic"}% Click to enlarge data. |
Title | Efficacy of T4N5 The Lancet Data - Code Expands |
Graph_Subgroup | General Principles |
Code Added | Yes |
Description | The cumulative number of AK and BCC lesions for each subject. The y-axis is truncated which hides the fact that Subj. 19 had 193 lesions (detected in alternate views of the data set). |
Contributor/Email | Mat Soukup (email: Mat.Soukup@fda.hhs.gov) |
Background | * Data is publicly available on journal website (reference below). * XP is life-threatening disease occurring in approximately 1 out of 250,000 people in the US. Average age of developing skin cancer is 8 years. * Study objective is to see if T4N5 reduces number of AK and BCC lesions. * Study enrolled 30 subjects, 20 randomized to T4N5. |
Special Considerations | |
Date | Original |
Original Date | 2007 |
Modified Date | |
Use/Suitability | Presentation |
Software Program | R |
Software | |
R-Code - Attachment | Lancet Data - Attached |
R-Code | lan <- read.csv("//cdsnas/oebdbdms/Graphics/DataSets/lancetdata.txt")<br /> c1 <- with(lan, visit1)<br />c2 <- with(lan, visit1+visit2)<br />c3 <- with(lan, visit1+visit2+visit3)<br />c4 <- with(lan, visit1+visit2+visit3+visit4)<br />c5 <- with(lan, visit1+visit2+visit3+visit4+visit5)<br />c6 <- with(lan, visit1+visit2+visit3+visit4+visit5+visit6)<br /> csum <- c(lan$base,c1,c2,c3,c4,c5,c6)<br />ID2 <- paste("subj. ", rep(lan$id, 7),sep="")<br />age2 <- with(lan, rep(age, 7))<br />ctry2 <- with(lan, rep(country,7))<br />trt2 <- with(lan, rep(trt, 7))<br />month2 <- rep(c(0,3,6,9,12,13,18), each=29)<br /> #BCC data bat <- read.csv("//cdsnas/oebdbdms/Graphics/DataSets/lancetBCC.txt")<br /> b1 <- with(bat, visit1)<br />b2 <- with(bat, visit1+visit2)<br />b3 <- with(bat, visit1+visit2+visit3)<br />b4 <- with(bat, visit1+visit2+visit3+visit4)<br />b5 <- with(bat, visit1+visit2+visit3+visit4+visit5)<br />b6 <- with(bat, visit1+visit2+visit3+visit4+visit5+visit6)<br /> bcc <- c(bat$base,b1,b2,b3,b4,b5,b6)<br />idb <- paste("subj. ", rep(bat$id, 7), sep="")<br />trtb <- with(bat, rep(trt, 7))<br />monthb <- rep(c(0,3,6,9,12,13,18), each=29)<br /> # Combine BCC and AK lesions <- c(csum, bcc)<br />trts <- factor(paste(c(rep('AK',203),rep('BCC',203)), c(trt2, trtb), sep="-"),<br />levels=c('AK-1','AK-2','BCC-1','BCC-2'), labels=c('Placebo-AK','T4N5-AK','Placebo-BCC', 'T4N5-BCC')) lesi <- factor(c(rep('AK',203), rep('BCC',203)), labels=c('AK','BCC'))<br />trti <- factor(c(trt2,trtb), levels=1:2, labels=c('Placebo','T4N5'))<br /> ids <- c(ID2, idb)<br />amonth <- c(month2, monthb)<br /> aat <- data.frame(id=ids,trt=trts, month=amonth, lesions, trti, lesi)<br /> #png('C:/Research/Graphics/Graphs4Display/webpages/classes/pages/images/lancetdata.png', # width=700, height=700) new.back <- trellis.par.get("background")<br />new.back$col <- "white"<br />newcol <- trellis.par.get("superpose.symbol")<br />newcol$col <- c('green4','blue','red','black')<br />newcol$pch <- c(16,1,4,8)<br />newline <- trellis.par.get("superpose.line")<br />newline$col <- c('green4','blue','red','black')<br />trellis.par.set("background", new.back) trellis.par.set("superpose.symbol", newcol) trellis.par.set("superpose.line", newline) strip <- trellis.par.get("strip.background")<br />strip$col <- 'gray91'<br />trellis.par.set("strip.background",strip) xyplot(lesions~month|id, groups=trt, data=aat, type='s', xlab='Month', ylab='Sum of New Lesions', ylim=c(-5,100), scales=list(x=list(at=c(0,3,6,9,12,18), labels=as.character(c(0,3,6,9,12,18)))), col=c('navy','hotpink4','deepskyblue2','red'), lty=c(1,1,1,1), key=list(lines=list(type='l', lty=c(1,1,1,1), col=c('navy','hotpink4','deepskyblue2','red')), text=list(lab=c('Placebo-AK','T4N5-AK', 'Placebo-BCC','T4N5-BCC'), col=c('navy','hotpink4','deepskyblue2','red')), columns=2, title='Treatment-Lesion')) #dev.off() |
SAS-Code - Attachment | |
SAS-Code | |
Stata-Code - Attachment | |
Stata-Code | |
Other Code - Attachment | |
Other Code | |
Keywords | efficacy, orphan indication, XP, Poisson regression |
OPTIONAL FIELDS | |
References | Yarosh D, Klein J, O\x92Connor A, Alas L, et al. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xero-derma pigmentosum: A randomized study. The Lancet, Vol. 357, Issue 9260, March 2001, pages 926-929. |
Datasets | |
Data | |
Attached Data | |
CATEGORIZATIONS | |
Classification-Evaluation | Efficacy |
Classification-Graph Type | Scatterplot |
Graph_Type | Scatterplot |
Variable Relationship | Continuous versus Categorical Conditioned |
Data Types | Categorical and Continuous |
Special Cases | |
Disclaimer | The views expressed within CTSpedia are those of the author and must not be taken to represent policy or guidance on the behalf of any organization or institution with which the author is affiliated. |
Permission | Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT OLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
Reference Image |